Challenges for algorithmic
execution



Agenda

e Context
e Research
e Todo



Some definitions
Execution vs. trading

e Execution
— No choice of asset, direction or quantity
— Usually intra-day or good for day orders

e Trading ... everything else
— Market making
— Arbitrage
— Model based trading



A brief history

1980s

Technique Significance

« VWAP, TWAP and e Market structure
participation strategies (electronic order books)

« Empirical approaches to determines spread of

market impact automated strategies



A brief history
1990s

Technique
e Bertsimas & Lo 1998

e Further gaming
countermeasures

Significance

e ITG s first algorithmic
brokerage

e 1997-2000 day trading:
everyone became a
model driven trader



A brief history
2000s

Techniques

e Landmark research
— Almgren & Chriss 2000
— Almgren 2001

— Kissell, Glantz & Malamut
2003

— Kissell & Malamut 2005
« Arrival price strategies
« Portfolio strategies

Significance

e Credit Suisse launches
AES in 2000

 DMA and algorithmic
execution account for
50% of NYSE turnover

e Some broker-dealers
have 80% of order flow
executed by algorithmic
strategies



Algorithmic execution strategies
A broad classification

Completing Non-completing

e Quantities « Participation
- VWAP e Relative value
— TWAP

« Participation rates
— Arrival price or shortfall
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Where we are now
“Algorithms are only good for liquid stocks”

Broker-dealers Investors

* Widespread use of « Broker-dealers algorithms
algorithmic execution, used for 15-30% of
either directly or when orders
unwinding « Increasing addition of

e Brand explosion of constraints to orders
strategies « Consequence:

completing strategies
become non-completing
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Execution schedules
Research has provided the benchmarks
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Execution models

Strengths Weaknesses

 Mathematically sound  Assume perfect markets
approaches to optimising  « Do not address tactics or
variance order placement

« Common ground for decisions

Investors and broker-
dealers



Other academic contributions

 Econophysics
— Models for non-gaussian returns
— Minority games

e Behavioural finance



Challenge #1

VOLUME
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The extremes for algorithmic execution
Volume and trade frequency within the FT-SE 100
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The well behaved ...
High trading frequency — low volume variance
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... and the not so well behaved
Low trading frequency — high volume variance
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Even the more liquid ...
BP.L until mid November 2006
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... can surprise

BP.L traded twice its mean daily volume on November 17
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Coping
Towards a common understanding of behaviour

e Median curves?

 Volatile daily volume has no effect for
completing strategies constrained by time

* Prediction of relative weighting?

2007-06-26 CARISMA conference

18



EXECUTION MICRO-
ECONOMICS



Order submission
The fundamental state model is simple
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Order submission
Some of the microeconomics

|
| |
) ! . 1 . .
Price making ! Price taking
| |
|
o |
] ] |
|
|
|
|
|
|
|
|
© |
" |
o |
) |
|
|
|
© - I
|
|
|
|
|
|
|
|
|
| — volatility
! — spread
L best size cleared
i | - = - volatility exceeds spread
I I I I I I I
2 4 6 8 10 12 14
minutes

2007-06-26 CARISMA conference

21



SUMMARY



Algorithmic execution

* One of the major execution methods
o Contribution from research is clear

 More Is needed to keep the mutual
expectations of buy- and sell-side In line

 Two challenges today

— Turning attention on the volume dimension

— Formalising the different levels of execution
model



Algorithmic execution

Data provided by = REUTERS P
Analysis tools [kX ]

Further information http://www.gbkr.com
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